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FOREWORD

This document is the final report of work performed on Science
by the WDL Division of the Philco Corporation during the Comet and
Close-Approach Asteroid Mission Study for the Jet Propulsion Laboratory
under Contract JPL 950870. The report covers work performed during the
period 2 July 1964 to 2 January 1965,
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SUMMARY

The report analyzes what is known about the geometry, brightness
and composition of comets to the extent necessary for conducting a
mission analysis and for designing conceptual spacecraft. Such comet
"“models'" have been developed to specify requirements of scientific
instruments for performing comet measurements, to assess the applica-
bility of existing instrumentation, and to determine the influence of
the comet environment upon subsystem design and mission capability,
Agtrophysical and exobiological scientific objectives have been iden-
tified and representative comet payloads established to determine the
distribution of matter and magnetic field during a fly-through, to
observe the nucleus and its surrounding region, and to determine cometary
chemical composition,

AN

Scientific measurements performed from on-board a spacecraft during
its intercept with a comet fulfill two roles in determining the compo-
sition of comets, The first function is to complement measurements
performed from earth astronomical observatories by direct sampling of
the particle, field and molecular composition of a comet, by close-range
observation of {ts physical features, and by detecting predicted but
unobserved spectral emissions., The second function is to supplement
measurements performed on the earth by confirming spectral lines pre-
viously recorded, especially those that are ambiguously identified,
On-board measurements can better serve their complementary and supple-
mentary functions if they are correlated with simultaneous photometric

and spectroscopic observations from Earth,

The compatibility of particle-and-field experiments for comet

intercepts with basic interplanetary measurements is unique to this
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b

type of encounter mission,

The scientific feasibility of comet missions with an Atlas-Centaur
launch vehicle during 1967-1975 has been established.

A mission to the close-approach asteroid Eros is outlined to

establish growth potential for the comet probe,.

The scientific feasibility of a comet mission to Pons-Winnecke

with an Atlas-Agena/Mariner-C during late 1969 and early 1970 has been

established.
iv
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SECTION 1
SCIENTIFIC OBJECTIVES

1,1 ASTROPHYSICS

Astrophysicists believe that a definitive insight into the origin
and formation of comets and planets will be gained by exploring comets
and asteroids with space probes [Whipple, 1963; Swings, 1962a; Newburn,
1961]. Much data must be collected for many years in order to refine
or to reject extant theorie& about the evolution of the solar system
ELyttleton, 1953], about the physics of cometary and asteroidal bodies
themselves [Wurm, 1963; Biermann and Lust, 1963; Robey, 1962], and
about the dynamics of the interplanetary mediﬁm [Brandt, 1961; Brandt,
1962 7.

There appears to be agreement within the scientific community that,
as with the moon and planets, the true nature of comets can be revealed
only by a direct probing of the coma and tail and by observations and
eventual sampling of the nucleus by & space probe, In the meantime,
photometric and spectroscopic identification of cometary materials in
the laboratory [Benton, 19647 and from ground observations (Swings and

Haser, 1956) will be continued,

Plans exist for ejecting artificial gaseous comets from rockets at
high altitudes, and great interest has been shown in orbiting an arti-
ficial™ cometary nucleus around theEarth fDonn, 19617, Observations

of natural comets from orbiting observatories have been considered.
Scientific measurements performed from on-board a spacecraft during

its intercept with a comet fulfill two roles in determining the compo-

sition of comets, The first function is to complement measurements

1-1

PHILCO | wDL

cneman o Tt K sor Bompang.

DIVISION g;{



WDL-TR2 366

performed from earth astronomical observatories by direct sampling of
the particle, field and molecular composition of a comet, by close-range
observation of its physical features, #and by detecting predicted but
unobserved spectral emissions, The second function is to supplement
measurements performed on the earth by confirming spectral lines pre-
viously recorded, especially those that are ambiguously identified,
On-board measurements can better serve their complementary and supple-
mentary functions if they are correlated with simultaneous photometric

and spectroscopic observations from Earth,

1.1,1 Origin of Comets and Asteroids

Either comets were formed in the solar system, or they were formed
in interstellar space and through some procei. were captured by the
sun's gravitational field, The physical evidence about comets is not
inconsistent with their possible origin in interstellar space, but the
dynamics of their possible capture and subsequent motion are debatable,
The recent discovery by Greenstein and Stawikowski 1964 that Carbon 13
occu;; in comet lkeya in almost the same proportion to C12 as it occurs
on earth suggests that comets were formed in the solar system, Oort
{19637 has suggested that comets were formed in the same region as the
planets but were subsequently expelled from the solar system by planetary
perturbations into a large 'cloud" surrounding the solar system, Stellar
perturbations presumably force some of these bodies back into the solar
system to smaller perihelion distances until they come under the influence

of Jupiter,

It has been conjectured that the asteroids are the remains of the
collision of two planets in the region now occupied by the asteroid
belt. Some of the smaller asteroids mayte the fragments of subsequent

collisions among these planetoidal particles,.

1-2
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1.1,3 ESRO Study Group

The European Space Research Organization (ESRO) Cometary Feasibility
Study Group has under consideration the study of intercept missions to
periodic comets [Biermann, 1964]. A preliminary list of comets for the
period 1970-1974 has been established; a document wiil be issued soon on
the physical characteristics of comets Tempel (2), Pons-Winnecke, Brooks (2),
Faye, Encke, Honda-Mrkos-Padjusakova, Tuttle-Giacobini-Kresak, Brorsen,

Wolf, Tuttle and Halley; and a detailed study of space cometary experi-
ments is being conducted [Swings, 1964). However, since decisions have
not been‘sade officially by the appropriate bodies of ESRO, no information
has been authorized for release [Di Benedeteo, 1964],

1.2 EXOBIOLOGY

‘ High interest exists in the detection of 1ife throughout the solar
system., The possibility of exploring comets to determine the presence
of organic compounds fundamental to life has been suggested, Spectro-
scopic observations of comets indicate unequivocally the presence of
CN, Cy, C,, and CH in the comets atmosphere (coma). The icy core
(nucleus) is presumably composed of the frozen gas molecules CH,, CO

4‘ 4
COZ' and others,

1-3
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SECTION 2
COMET MODELS

2.1 GEOMETRY AND COMPOSITION

The geometry of periodic comets selected for first-generation comet
missions can be represented by a star-like spherical nucleus of 1 kn
diameter or less, surrounded by a bright region referred to as the nuclear
condensation of perhaps 103 lkn apparent diameter, imbedded in a spherical
coma of 105 km apparent diameter near perihelion (intercept) between
1 and 2 AU, The position of the nucleus is generally off-center along

the sun-comet line, A faint, short tail extends along this line away

from the sun,

|
|

}—m‘H | -
i |

/
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- T ———
NUCALRUS D —_
NUCLEAR
CONDENSATICN

COMA Tt

The visible size of the coma, as seen from the comet probe, may be
larger than as seen from the Earth because, in space, no atmospheric
background '"'noise' exists to mask the faint outer limits of the cometary
atmosphere. It has been suggested, for example, that an apparent size

of 0.5 deg., measured from the earth may appear to be 3 deg. from the
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probe at an equal comet-observer distance outside the Earth's atmosphere

(this means the same optics also).

The atoms, molecules, and solid particles in the coma and tail ori-
ginate in the nucleus, The composition of the nucleus is generally
accepted to consist of icy compounds (such as water, ammonia, methane,
carbon, etc.) partly in the form of solid hydrates with an admixture
of meteoritic dust (e.g., metals and silicates) "Wurm, 1963; Lyttleton,
1953 ; Whipple 19637, The observed gases in the coma and tail are atoms
and di- or triatomic radicals or molecules resulting from sublimation,

photodissociation, ionization, and chemical reactions,

Most comae and many tails reveal a solar continuum that is due to .
the scattering of solar radiatiom by solid particles [Swings, 19637,
. In addition, gases in the coma emit fluorescence spectra as a result
of excitation by solar electromagnetic radiation, while gases in the

tail show spectra as a result of ionization by solar corpuscular radiation.

The few available data on the composition and physical characteristics
of selected periodic comets Tempel (2), Pons-Winnecke, Kopff and Brooks (2)
are summarized in Table 2-1 {Cunningham, 1964; Dossin, 1964; Roberts, 1964;
Vsekhsvyatskii, 19637, Their orbital characteristics are discussed in

Volume 3.
2.2 BRIGHTNESS MODEL

2.2.1 Distant-Passage Model

The brightness of a comet is usually represented by an empirically

justified relation of the form

[o]
° ) @
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where 4 is the earth-comet distance, r is the sun-comet distance, and n
characterizes the degree of central condensation of the comet under
observation, Phase with respect to the observer is neglected and comet
activity is assumed not to vary widely in time, Values of n range from
2 to 6 generally, with an average of 4, Expressed in stellar magnitudes,

the relation becomes
mo= m o+ 5 log &4 + 2.5 n log r, (2-2)

where m is an absolute magnitude, Theoretically, it represents the
brightness that a comet appears to exhibit at unit distance from the sun
and from the earth (4 = r = 1 A,U,), However, the light from a comet
results from sunlight reflected and scattered by the nucleus and dust
particles, and from light re-emitted by molecules excited to fluorescence
. by solar radiation. These different contributions vary with heliocentric
distance and the particular apparition, and thus cannot be represented
strictly by a magnitude law as the one expressed in Equation (2-2), Never-

theless, the time-honored formula is useful,

2,2,3 (Close-Approach Model

The most reliable estimate of brightness distribution has been
provided by Professor L, Cunningham of the University of California,
Cunningham 19647 has suggested a symmetrical model based upon obser-
vations, The symmetry of the illumination contours are attributed to
the age of the comet which is a measure of cometary activity, the
periodic comets being very old and having & corresponding low activity.
Cunningham has indicated that in the region of maximum brightness, the
brightness distribution of both the coma and the nuclear condensation

of faint, periodic comets near perihelion can be described by exponential

2-4

PHILCO \ WDL DIVISION .

v o SOt Yl Clmprany ‘ 2



.16”

‘l' WDL-TR2366

functions of angle away from the center of the nucleus. That is,

-kL2

B = Be (2-3)
(o]

B = brightness measured in stellar magnitudes per (minutes of
arc)

B = brightness at the center

L = angular distance measured in minutes of arc away from the
center by an observer at 1,0 A U,

This brightness pattern applies to the coma and the nuclear condensation

in which the coefficients k and Bo for Pons-Winnecke are as follows:

Region k. _2__...B

Coma 8 4.0"/ (min.)?
M 2

Nuclear 2000 6.0 /(min.)

Condensation
The above model can be converted to stellar magnitudes M at 1 A U,:

M o= M+ 2.5 kLz log e (2-4)

where Mo is the absolute magnitude,

2.3 SPECTRAL EMISSION
\
A tabulation of charactertistic cometary spectra is shown in Table
2-2 [Swings and Haser, 1956; Wurm, 1963; Benton, 1964; Swings, 1962a),

2-5
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For the neutral and ionized molecules listed, the table indicates the
wavelength range within which emission lines have been detected, the
wavelength of maximum intensity, and the comet region within which
the maximum intensity is observed, and the maximum heliocentric

distance at which the emission spectra can be observed,

Since the heliocentric distances at intercept are less than 1,6 A U.
except for Brooks (2), the molecular emissions listed in Table 2-2 may
all be observable with an on-board spectroscope, particularly when it
is pointed toward the region of maximum intensity observed previously
from Earth., In addition to confirming the presence of positively
identified molecules (e.g., CN, C2’ C0+), it is of high interest to
detect emission frqpm ambiguously identified molecules (e.g., OI’ 0H+),
from predicted but as yet unobserved ions and stable molecules (e.g.,

+
NH , H2’ NZ) in the far-ultraviolet region and radicals (e.g., CH2

‘ CH3) in the near-infrared region,

Although similarities exist in the spectral emission and hence the
molecular composition of periodic comets, as indicated by the observed
spectrum in Table 2-1, variations occur among comets that are generally
unpredictable., However, it is evident that all those observed spectro-

scopically contain carbon molecules; {.e,, CN C CH and CO+.

20 C3»

2.4 PARTICLE DISTRIBUTION

2.4,1 Molecules and Ions

From photometric and spectroscopic observations of such phenomena,

the densities of various gases and dust have been estimated in several

@ 2-7
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comets 'Swings, 1962c; Sadler, 19627, The values shown in Table 2-3

have been used as a guide during the study until data become available

for the selected comets under study, As shown, the gas densities decrease
with increasing distance from the nucleus, and their absolute and relative
abundances differ from one comet to another, Although not shown, these
parameters also vary with heliocentric distances,

-

Table 2-3 Representative Comet Densities

DISTANCE DUST DENSITY
COMET A
CAS DENSITY FROM NUCLEUS PARTICLE | REGION
Encke co” 1 - 100/cc 10% km
(gas head) | oy, c, 3/cc 4 x 10, kn »
1/ce 7 x 10“ km }10 /cc | Coma
‘ 0.5/ce 9 x 10 km
Brooks (2) | CN, C 104-106/cc near _nucleus
(gas head) 2 1 - 10/ce 10° km
2.4,2 Dust

No probable distribution of dust has been generated which can be
considered useful for estimating the expected change in dust density and
velocity as the spacecraft flies through these comets, A gaseous comet

like Encke may have an average particle density of 10'9/cc in its coma.
2.4.3 Electron

Since the coma i8 considered electrically neutral, the number of
electrons should equal the number of ions, In the coma of some comets,

only neutral molecules have been detected spectroscopically. An upper

2-8
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limit to the number of mlectrons can be obtained by assuming that the
number of ions is an order less than the number of the weakest neutral

molecule detected, e.g., C2 or C,. For 1031 molecules, this means 1030

3
electrons. For an equivalent uniform comet diameter of 105 km, the
maximum average electron density is about 1/cc, a value commensurate
with the electron density of the interplanetary medfum between 1 and

2 AU, The distribution of electrons through the coma is unknownm.

2.4.4 Hydrogen

The proton density in cometary comae is unknown, but not high enough
to produce hydrogen in quantities sufficient to generate detectable

hydrogen lines, However, 21 - cm emission has been reported.

2.5 RADIO EMISSION

The only reported observations of cometary radio emission have been
made on Arend-Roland during its perihelion passage in April 1957. The
few data are tabulated below in Table 2-4.

Radio emission at 27,6 Mc [Kraus, 1956) is produced by the inter-
action of the cometary plasma with solar corpuscular streams. The
emission mechanism most likely responsible is the deceleration of comet-
ary ions in a solar corpuscular stream which produces plasma oscillationms,
usually in the tail region. Dobrovol'skii M1961] has shown that other
mechanisms are ineffective in comets; e.g., synchrotron and Cerenkov

emission, and interaction of cometary dust with solar protons [Erickeon,
19577.

Emission at 1420 Mc [Muller, Priester, and Fischer; 19587, presumably

2-9
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from atomic hydrogen in the cometary atmosphere, was unstable and cannot

be regarded as firm,

Unequivocal radio emission at 600 Mc [Coutrez, Hunaerts, and
Koeckelenbergh; 1959 is produced by transitions between fine-structure
components due to the so-called A -type doubling of rotational levels
in the fundamental electronic state of the CH molecule, The number of
molecules which might explain the observed flux density at the earth of
5.6 x 10“23 vattl/mzlcpl is about 103L 1031
estimated population of cometary atmospheres, At 1.5 million lkm away
from the comet, the flux density should be about 5.6 x 10-17 vatt./nzlcpl.

With a 4-db spacecraft receiver at 600 Mc and for a desired signal-to-

, @ value compatible with the

noise ratio of 10, the antenna gain required above isotropic is 13.2
(12db). A 60-degree corner reflector or a 2,5-foot long Yagi will
yield the necessary effective aperture, However, whether radio emission

' is detectable in the vicinity of the selected periodic comets is
debatable.

2.6 .MAGNETIC FIELD DISTRIBUTION

Robey 719621 suggests that the magnetic field distribution in the
coma is of the form,

B = B (_"_:_)“, nsl, (2-5)

for a spherical nucleus of radius do surrounded by a concentric spherical
coma of radius d, where Bo is the reference magnetic flux density at the
surface of the nucleus, The exponent n varies approximately linearly

with heliocentric distance from 0,54 to 1,46 AU, for Encke, Not enough

2-11
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data exists on the selected periodic comets to develop comparable values

of n, Therefore, the results for Encke have been used as a model,

Robey has computed that, for Encke with a radius of 1 km, the
average flux density at the surface of the nucleus decreases logarith-
mically with decreasing heliocentric distance, i.e., from 0,2 gauss at
1.5 A,U,, to 0.0183 gauss at 1.0 A,U,, to 0,006 gauss at 0.5 AU, The
flux at the outer boundary of the coma varies inversely with heliocentric
distance; at 1 A,U,, it has been calculated to be 48,3 x 10-15 gauss,

2-12

PHILCO WDL DIVISION -



3.1

WDL-TR2366

SECTION 3

COMET EXPERIMENTS

PARTICLE AND FIELD MEASUREMENTS

The scientific objectives outlined in Section 1 lead to the identi-

fication of scientific experiments in three categories: (a) particle-

and-field measurements in the coma, (b) observations of the nucleus, and

(c) physicochemical measurements of cometary matter,

A set of eight particle~and-field experiments and a propagation

experiment is listed in Table 3-1A along with the physical and perform-

ance characteristics of instruments selected to perform the measurements.

The instruments are the following:

PHILCO

Comram » TS dor Sompsay

d.

Triaxial helium magnetometer
FSmith, 1964; JPL, 1963 c)

Plezoelectric-microphone dust detector
FJPL, 1964; JPL, 1963 c; JPL, 1962 a; NASA, 1963]

Electrostatic-analyzer plasma probe
FJPL, 1964; JPL, 1963 a, c¢; JPL, 1962 a, b]

Ion-mass spectrometer
(NASA, 19637

Planar-trap electron detector
rJeL, 1962)

Integrating ionization chamber
fJPL, 1963 c¢; JPL, 1962 a]

Trapped-radiation Geiger-Mueller counter
[JPL, 1963 c; JPL, 1962 a]

Bistatic-radar receiver

[JPL, 19641
\
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Among these instruments, the performance of the following depend upon
the probe's velocity relative to the comet: dust detector, electron

trap, and ion mass spectrometer.

3.1.1 Dust Detector

For a relative velocity, Vi the minimum particle mass, mp, detectable
with a detector of sensitivity, M, is

mp = M/vh (2-6)

For velocities of 8 to 16 km/sec derived from the trajectory analysis
and a sensitivity of 10-5 dyne-sec, for the piezoelectric-microphone
instrument, m  ranges from 1.25 x 10”1 to 6.25 x 10712 gm. The average
‘ impact rate for a detector area, A, and an average dust-particle density,

p, in the coma of a gaseous head comet is

Ap b (2-7)

ip = vh

The impact rates range from 0.28 to 0.56/sec for A = 350 cn® in the 0G0

instrument, and for p = 10-9 cc. in a typical gaseous comet,

3.1.2 Electron-Ion Trap

The minimum detectable charged-particle density for an instrument

13

of 10 ~° amp/volt sensitivity is

N = (de/dt)/A v, = 6.25 x 10°/a vy.- (2-8)

For a detector area of 1 co® moving at a relative velocity of 8 to 16

‘ km/sec, the charge density ranges from 0.78 to 0.39/sec.

3-2

PHILCO WDL DIVISION .

e N Ky



WDL-TR2366

3.1.3 Ion Mags Spectrometer

Under the assumption that the relative spectrometer-ion velocity

is the same as the relative spacecraft-comet velocity of 8 to 16 lm/sec,
14

an 0GO-type flight ion-mass spectrometer with a 10 = amp/volt sensitiv-
ity and a window area of 12 cm® will detect ion densities of 6.25 x 10-3
to 3.25 x 10-3 per cc. These minimum densities are compatible with comet
ion densities. For example, the density of CO" ions in Encke at 104 km

from the nucleus is at least 1/cc.

3.1.4 Neutral Mass Spectrometer

Generally speaking, a neutral mass spectrometer could be expected
to detect neutral molecules only if the densities were 104 to 106 per cc,
The densities of CN and C; motecules in the vicinity of the nucleus of
Brooks (2) fall within this range.

3.1.5 Other Instruments

In addition to the particle-and-field instruments tabulated in
Tables 3-1A and 3-1B, others are described in Appendix A.l.

3.2  OBSERVATIONS OF NUCLEUS

A set of five experiments directed toward the nucleus is listed
in Table 3-2A along with the characteristics of instruments similar
to those required to perform the observations, The instruments are
the following:

a. Slowscan television
FJPL, 1964; JPL, 1963 c)

b, Infrared photomultiplier radiometer

FJPL, 1964)
‘ t, Infrared spectrometer
[JPL, 19641 3-3
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d. Ultraviolet spectrometer
FJPL, 1964

e. Ultraviolet photometers
rJPL, 1964; JPL, 1963 c’

The requirements imposed upon subsystems by these instruments are tabu-
lated in Table 3-2B,

3.2.1 Slow-Scan Television

The feasiBility of using television subsystem with the performance
of the Advanced Mariner TV has been established on the basis of the comet
brightness model during a close approach to Pons-Winnecke's nuclear
condengsation. The Mariner-C television appears to have insufficient
sensitivity (see Section 7.2 in Volume 6). The characteristics of the

‘ Advanced Mariner TV are tabulated in Table 3-2A, It is recommended that
pictures be taken through yellow-red and blue filters when directed
toward the nuclear condensation. The TV is located with photometers

and a spectrometer on a tracking platform,

3.2.2 Comet Tracking Platform

The comet tracking platform is slaved to the comet tracker, which
it supports. Figure 3-1 shows the variation of the maximum angular track-
ing rate as a function of expected miss distances and closing velocities,

based on the planar geometry illustrated below.

vhl Comet Probe
Nuclear Condensation
d cleus
m
. The relation of angular tracking rate, tracking angle, and probe-nucleus
3-6
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Fig. 3-
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distance for a given approach relative velocity Vi and closest approach

distance dm (aiming point) is simply,

de/at = -(w sin’ 0)/d_. (3-2)

3.2.3 IR Radiometer

A measurement of the surface temperature of the nucleus is desirable.
However, estimated temperatures range from 100 to 200°K, so that the
performance, physical characteristics, and requirements of the radiometer
in Tables 3-4A and 3-4B may be incompatible with the high sensitivity

demanded by such low temperatures,

3.2.4 IR and UV Spectrometers

The spectral regions selected for the scanning operation of the
’ IR and UV spectrometers are those corresponding to the spectral emissions
tabulated in Table 2-2, in particular for the CN, C2, C3 and CH molecules
which occur in some abundance and have been observed from the earth in
the periodic comets. Sensitive spectrometers are needed to establish

the existence of OH, NH, NH2 and 0I molecules in the coma heretofore not
observed in the selected comets. In the coma and near the nucleus,
ambiguous observations of the CH" and OH" ions have been recorded and

could be confirmed.

3.2.5 UV Photometers

In addition to measuring the intensity of discrete wavelength
emissions from known molecular components, UV photometers are to be used
for measuring the intensity of solar Lyman-Alpha radiation scattered off
molecular hydrogen in the coma and in the vicinity of the nucleus. Changes
in scattered radiation are to be correlated with direct Lyman-Alpha radia-

tion detected with a photometer aimed at the sun.

3-10
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3.2.6 Other Instruments

In addition to the instruments for observing the nucleus tabulated

in Tables 3-2A and 3-2B, others are described in Appendix A,2.

3.3 CHEMICAL COMPOSITION

The photometric and spectroscopic measurements discussed in
Section 3.2 with regard to the nucleus apply also to determining the
composition of the coma approached and traversed by the spacecraft.
Moreover, the ion mass spectrometer considered in Section 3.1 with regard

to particle-and-field measurements applies.

The chemical analysis of cometary material by such techniques as
gas chromatography, alpha-particle scattering and neutron activation
FJPL, 1963 b1 depends upon collecting adequate samples from the rarefied
atmosphere of the coma at high relative particle velocities, These
techniques appear feasible only on a mission in which the spacecraft
paces the comet in the vicinity of the nucleus or actually lands on the

nucleus to extract samples.

3.4 REPRESENTATIVE PAYLOAD

Table 3-3 represents a full complement of scientific instruments
for determining the distribution of matter and of the magnetic field
through the coma of selected comets (P), for observing the nucleus (0),

and for determining the chemical composition of cometary material (C).

3.4,1 Mariner-C Comparison

Referring to Table 3-3, items 1, 2, 3, 5, 6 and one each of items

8 and 9 are identical to the Mariner-C science complement, It is shown

3-11

W

{

i



WDL-TR2366

Table 3-3. REPRESENTATIVE COMET PROBE SCIENCE PAYLOAD
(ATLAS-CENTAUR)

Instrument Weight Power Function
(1b) (w)
1. Magnetometer 6.1 7.0 P
2. Dust Detectors (2) 2.3 0.2 P
3. Plasma Probe 7.0 3.5 P
4. Ion-Electron Trap 8.0 2.0 P
S. 1lonization Chamber 2.6 0.5 P
6. GM Tube 2.1 0.4 P
‘ 7. Ion-Mass Spectrometer 8.0 8.0 P,C
8. Lyman-Alpha Photometers (2) 3.0 3.0 P,C,0
9. UV Photometers (2) 3.0 3.0 c,0
10. UV Spectrometer 22.0 : 12.0 c,0
11. Television 35.0 16.0 o]
Totals 99.1 1bs 55.6

Note: Bit rates, thermal limits, orientation and preferred S/C
location of each instrument are given in Tables 3-1B and
3' 23-
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in Section 5 of Volume 9 that a Mariner-C launched with an Atlas-Agena
in 1969 can be modified to include an ion-mass spectrometer (item 7)
and a gimbaled comet tracker to direct two UV photometers toward the
nucleus (item 9) in addition to supporting two Lyman-alpha photometers
(item 8), It is also shown that a modified Mariner-C launched with an
Atlas-Agena in 1970 can support, in addition, an Advanced Mariner

television subsystem (item 11) to observe the nucleus.

Table 3-4 compares the science payloads of the basic Mariner and

its near-minimal and maximal modifications.

3-13
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Table 3-4, Mariner-C Comet Probe

Science
Mariner-C Mariner Mariner
Ins trument (1964) Mod, 1969 Mod, 1970
Magnetometer X x X
Dust Detectors (2) x x x .
Plasma Probe x x x
Jonization Chamber x x x
GM Tube x x x
Ion-Mass Spectrometer x x
‘ Lyman-Alpha Photometer x x (2) x (2)
UV Photometer x x (2) x (2)
Television x x
*
UV Spectrometer (x)
*
Ion-Electron Trap (x)
* Alternative couple to the television,
3-14
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PHYSICAL PROPERTIES

SECTION 4
ASTEROID MODEL AND EXPERTMENTS
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The orbital characteristics of five close-approach asteroids are
tabulated below in Table 4-1,

Table 4-1 Orbital Characteristics of Close-Approach Asteroids

Period q a e i Closest Earth

ASTEROID 1" oy | (auy | (auy deg) | Dist. (a.U./yr)
0.042
Icarus 1.12 | 0.186| 1.078| 0.827] 23.0 o
0,073
Geographus | 1,388 | 0,827 | 1.244( 0.335] 13.325 1565
Hermes 1.466| 0.677| 1.290| 0.475]| 4.685 9.00
1937
Eros 1.761] 1.133| 1.458| 0.240| 10.831 0.150
1975
Apollo 1.812| 0.645| 1.486| 0.566| 6.422 e

Significant data on their physical properties are scarce because all are

fast-moving small objects that have allowed only short observation times.

A digest of the physical properties and composition of close-approach

asteroids in given below:

LCO
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Shape

Size

Apparent Magnitude :

Rotation Period
Density, Mass

Surface Temperature:

Composition

Atmosphere

Magnetic Field

Irregular

(Eros : 22 x 6 km)
Icarus 1.4 km
Geographus: 2,0 km
Eros : 22,0 km
Icarus 18

Eros : 9 to 10.4
Eros i 5.5 hr
Unknown

Icarus : 800K

WDL-TR2366

Alumino-silicates, silicates, nickel-

ferrous compounds
No atmosphere indicated

Unknowm

4.2 POSSIBLE EXPERIMENTS

The following experiments in the vicinity of a close-approach

asteroid are suggested:

EXPERIMENT

Visual Observation

Infrared
Radiometry

Ultraviolet
Photometry

Magnetic Field

Mass

HILCO

B RRE T Y

OBJECTIVE
Ascertain shape,
size a rotation

Determine surface
temperature

Determine surface
emissions

Measure direction
and intensity

Determine mass
and density

4-2

TECHNICUE

TV with color filters
(e.g., Mariner '64)

IR Radiometer
(e.g., Marimer 2)

UV Photometer
(e.g., Mariner ‘'64)

Magnetometer
(e.g., Mariner '64)

S/C trajectory
deflection-Radar
ranging system
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4.2.1 Particles and Fields

The detection of a magnetic field near an asteroid is a link in the
determination of the origin of the asteroids and their composition. Thus
careful measurements of the change in the interplanetary magnetic field
in the vicinity of an asteroid should be conducted. Simultaneous

observations of the solar wind with a plasma probe are desirable,
The equilibrium temperatures of a rotating body like Eros with no
internal heating should be close to 300°K, An IR radiometer or microe

wave radiometer will accomplish the measurement,

4.2.2 Electro-Optical Observations

Photometric, spectroscopic and television observations from the

‘ solar side of the illuminated asteroidal surface will yield measurements
of the spectral intensity of scattered sunlight, and an indication of
1ts shape and of its grosser surface features, A miss distance of 1000 lm
from Eros, a 22 km x 6 km body, is compatible with the resolution achieved
with Mariner-C television optics i,e,, 1 km at 10,000 lm. Visual
observations require a very small miss distance of a few hundred
kilometers or less to ascertain surface features, The measurement of
spacecraft trajectory deflection and the feasibility of radar ranging

are also improved by a close miss,

4.2.3 Chemical Composttion

Chemical analysis techniques can be performed only from the asteroid
surface and thus require a lander mission., Spectroscopic measurements,
however, can provide data from which the surface composition can be

estimated.

o .
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SECTION 5
CONCLUSIONS

5.1 COMET AND C&OSE-APPROACH ASTEROID MISSIONS

The report analyzes what is known about the geometry, brightness
and composition of comets to the extent necessary for conducting a
mission analysis and for designing conceptual spacecraft, Such comet
"models'" have been developed to specify requirements of scientific
instruments for performing comet measurements, to assess the applica-
bility of existing instrumentation, and to determine the influence of
the comet environment upon subsystem design and mission capability,.
Astrophysical and exobiological scientific objectives have been iden-
tified and representative comet payloads established to determine the
distribution of matter and magnetic field during a fly-through, to

observe the nucleus and its surrounding region, and to determine

cometary chemical composition.

Scientific measurements performed from on-board a spacecraft during

its intercept with a comet fulfill two roles in determining the compo-
sition of comets, The first function is Co complement measurements
performed from earth astronomical observatories by direct sampling of
the particle, field and molecular composition of a comet, by close-

range observation of its physical features, and by detecting predicted

but unobserved spectral emissions. The second function is to supplement

measurement s performed on the earth by confirming spectral lines

previously recorded, especially those that are ambiguously identified,
On-board meagurements can better serve their complementary and supple-
mentary functions if they are correlated with simultaneous photometric

and spectroscopic observations from Earth.

The compatibility of particle-and-field experiments for comet

intercepts with basic interplanetary measurements isunique to this

5-1
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type of encounter mission.

The scientific feasibility of comet missionSwith an Atlas-Centaur
launch vehicle during 1967-1975 has been established,

A mission to the close-approach asteroid Eros is outlined to

establish growth potential for the comet probe,

The scientific feasibility of a comet missions to Pons-Winnecke

with an Atlas-Agena/Mariner-C during late 1969 and early 1970 has been

established,
5=2
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APPENDIX A
INSTRUMENT SUPPLEMENT

A,1 PARTICLE-AND-FIELD INSTRUMENTS

Data sheets on the following instruments are presented in this
section to supplement the instruments tabulated in Tables 3-1A to 3-1B

for performing particle and field measurements in Cometary Coma:

1. 0GO-C Massenfilter
[Leite, 1964)

2, JPL Ion Mass Spectrometer
Giffin, 1964

In addition, a brief summary of &an infra-red and visible-light
photometric dust detector [Cooley, 19641 is presented,

A.1.,1 Universjty of Michigan OGO-C Massenfilter

The following parameters describe the overall characteristics of
the OGO Massenfilter:

Dimensions 8 x8 x 8 in,
Weight 8.3 lbs,
Power 36 wattspeak; 23.8 watts average
Dynamic Range 0-50 AMU (spectra)
0-40 AMU (integrated mass flow)

Sensitivity 10.10 to 10-15 amp per volt
Window Area 5.5 degree conical look angle
Resolution 2 AMU at 40 AMU; M/AM = 20 at half-amplitude
Output Data Analog (0-5 volts)
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Thermal Limits 0°c to 40°c (operational)

Measurement Time 5 sec., (sweep over spectrum)
30 sec, (complete ion mode survey)
30 sec., (complete neutral mode survey)
70 sec, (complete cycle of opexation)

A l,2 JPL Ion Mass Spectrometer

Dimensions 12 x 6 x 3 inches
Weight 10 1bs,
Power ‘ 10 w
Dynamic Range 1 - 66 AMU
Sensitivity 3 atoms/cc
Field of View 60~degree cone
Resolution M/ M > 40
Output Data Ligital

‘ Bits 3000 bits/sepctrum

for 1% peak measurement

Measurement Time Data accumulated in 50 to 60 sec of
continuous scanning during approach at
3 km/sec relative velocity; instrument
designed for lunar atmosphere measurements

A,1,3 1R-Visible Photometric Dust Detector

Exotech, Inc, has conducted experimental programs that show that
high-velocity punctures can be detected with infra-red sensors that
observe the radiation produced in a8 vacuum from impact and puncture of
a thin target, Experiments show a correlation between the intensity of
the infra-red signal and the projectile's kinetic energy; so that, if

the impact velocity is measured, the particle mass can be calculated,
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Analvsis of data by North American Aviation on the effective color
temperature of impact flash at the time of peak luminosity for 50-micron
Pyrex spheres on aluminum shows that the effective temperature varies
approximately as the 0,35 power of velocity from 6 to 14 km/sec. (Relative
spacecraft-comet velocit es range from 8-16 km/sec). By assuming a
blackebody spectral distribution and calculating the peak black~body
radiation corresponding to the North American Aviation measurements
in the visible spectrum, a dependence of the peak black-body radiance
on the 3.2 power of velocity was found, which is in approximate agreement
with the velocity-cubed dependence determined from infrared impact-flash
measurements made during this program and which is predicted on the

basis of a dimensional analysis of the impact flash process,

Further research is desirable to determine more precisely the
. spectral distribution of impact-flash, puncture-flash and back-spatter
flash signals as a function of time after impact for the range of
projectile and target parameters which are of potential utility for

advanced meteoroid instrumentation systems.

Two lead-sulfide (PbS) IR-sensor units have been developed by Exotech
and tested at pressures down to 1.1 x 10-8 Torr for operation in the

0.7 to 2.5-micron wavelength region,
A,2 OBSERVATIONS OF NUCLEUS

Data on the following instruments are presented to supplement the
instruments tabulated in Tables 3-2A and 3-2B for performing photometric

and spectroscopic measurements on the nucleus and in the coma:

(1) NRL Lyman-alpha photometer
[Randall, 1964; Randall, Hanley and Larison, 1963]
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Most of the NRL rocket-flight spectrometers operate below 20002 and

thus outside the region of cometary interest[?iomkajlo, 1964].

\
(2) Cook Electric Company scanning spectrometer
[Cook, 1964]

A,2,1 NRL pyman-Alpha Photometer

Dimensions-Detector 3.4 cm dia x 2.4 cm long
Weight 33.3 grams
Spectral Range 1040-13404
Resolution 108
Sensitivity 407% Efficiency
Exposed Detectar Area about 3/8" diameter
Angular Field of View + 40 deg.
‘ Thermal Limits During Operation  -15°C to +15°C
Flight History a) Aircraft
b) Rocket

A.2.2 Cook 0AO-A Scanning Spectrometer

Dimensions 15 x 9% x 45% inches
Weight 52 1bs
*
Spectral Range 1000 - 4000 &
in two overlapping bands
Resolution Selectable slit widths:
10 and 100%
20 and 2008
Output Data Digital and analog
Thermal Limits -55°C to +72°C

o
* Useful range for cometary spectral emissions is 3000 - 4000A
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